CALCULATION OF THE SPATIAL STREAMLINE FLOW
AROUND THE BLADES OF AN AXIAL TURBINE BY THE
POTENTIAL FLUX OF AN INCOMPRESSIBLE LIQUID

V. P. Ryabchenko ' UDC 532.5:621.22

During the past two decades considerahle attention has been devoted to the flow of liquids or gases in
axial compressors and turbines. In theoretical investigations an approximate solution of the problem of the
spatial flow through a turbine was obtained by splitting the problem into two interconnected two-dimensional
problems: calculating the average axisymmetrical flow through the blades of the apparatus and the flow through
a grid situated on the surface of rotation in layers of varying thickness [1-3]. In a number of papers [4-11]
the three-dimensional nature of the flow was taken into account approximately without this subdivision of the
problem. The geometry of the blades was simulated either by a spatial array of plates [6-8] or by a spafial
ring array of blades, the shape of which is parts of screw surfaces [10, 11]. The latter model obviously better
describes blades of an axial turbine in general, but the method of solving the problem in [10, 11] is too complex
for making commercial calculations and requires considerable computer time. In this paper we describe a
more economic method of calculating the aerodynamic characteristics of a spatial ring array around which an
incompressible liquid flows, which is based on the vortex theory or a propeller {12] and an impeller of finite
swing [13].

1. We will consider the flow of a liquid through a single series of blades which rotate with constant angle
of velocity w in a coaxial cylindrical channel, which is infinite in the axial direction. The model of the flow is
based on the following assumptions: 1) the incoming flow is a uniform flow with an axial velocity v at infinity,
2) the liquid is ideal and incompressible, and 3) the perturbations in the liquid are small compared with the un-
perturbed flow. We will introduce a Cartesian system of coordinates (x, y, z) and a cylindrical system of co-
ordinates (x, r*, 6*)connected with the rotating series of blades. The x axis is directed along the axis of the
cylinders, and the y and z axes are taken in a plane perpendicular to it. The coordinates r* and 9* are related
te y and z by the usual equations: y = r*cos8*, z = r*sin6*, where the angle 8%, is measured in the positive
direction from the y axis (Fig. 1).

We will assume that the blades xpy (@=0, ..., N—1) are infinitely thin, and their shape is close to the
surfaces of the current of the unperturbed flow, which are parts of screw surfaces bounded in the (r*, 6% plane
by the rectangle {risr* =ry, —Y+o, <0<+ o). Hereap =27n/N, n is the number of a blade, N is the
number of blades, r, is the radius of the inner cylinder, r, is the radius of the external cylinder, and -y +ap
and ¥ +a, are angles defining the position of the front and rear edges of the blades, respectively. Withinthe
framework of the model considered the vortex trails which occur behind the blades due to a change in the cir-
culation along the height of the blade will be assumed to be situated along the surfaces of the current W, of the
unperturbed flow bounded in the (r*, 6 *) plane by the half-zone {ri Sr*=r, Yo, KO <o}
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The screw surfaces which schematically represent the blades and the vortex trails behind them are de-
fined by the equations

z =rmb, y = rrcos (0 4 a,), 2 =rirsin (0 4 a,), (1.1)
where m=v/wry; r=r*/r; are the dimensionless radial coordinate, and the angle 0=6*—q,.
The perturbed motion of the liquid outside the blades and the vortex trails with the above assumptions
will be potential and steady [10].
The potential of the velocity ¢ of this motion satisfies Laplace's equation
Ap =0
outside the surfaces Zp and Wy, (=0, ..., N—1) and the following boundary conditions: nonpenetration of the
liquid through the surface of the blades
Vo=V, x &2 (1.2)
continuity of the pressure and the normal component of the velocity for a transition through the surface of a
vortex trail
pl =0, [(v-y)pl =0, x & Wy;
decay of the perturbed velocities at infinity in front of the blade
lim yo = 0;

X->-—00

finiteness of the velocity of the liquid along the lines of the front edges of the blades 1y
Ve |z, < 00
nonpenetration of the liquid through the surface of the outer and inner cylinders

dglor =0 for r=1landr =1, (1.3)
where p is the vector of the normal to the surface Zp; V,, is the normal component of the projection of a blade
on its mean surface $p; v = grad; X=(x, y, z);A is Laplace's operator; h=ry/r,; and the brackets denote sudden
changes in the quantity enclosed in them.

2. The problem can be solved using the scheme in which the blade is replaced by a vortex surface, when
the parameter h>1 and h~1,

We will first consider the case when h>>1. We will divide the blade into N; zones with respect to r, Ny
zones with respect to 6, and we will simulate it M=N;N, with horseshoe-shaped vortices in the same way as in
[13] for a single-plan impeller of finite swing.

The horseshoe-shaped vortex consists of a section of an additional vortex of swing 26 =(h—1)/N; and two
semiinfinite vortex filaments converging from the ends of the additional vortex and situated on the screw lines

defined by equations (1.1) for fixed values of the coordinate r equal to the coordinates of the ends of the as-
sociated vortex. All the vortices of this system have the same intensity T, , which can be represented in the

form
I‘+ - UohI‘,

where TI' is a certain dimensionless constant, and v, is the velocity of the unperturbed flow along the mean radius
of the channel [r =ry=h +1)/2].
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The choice of the coordinates of the associated vortices and the control points at which the velocity is
determined, due to the system of screw horseshoe-shaped vortices, is made in the (r, §) plane using the same
scheme as in [13].

Suppose s is the number of the zone with respect to 6(s=1, ..., Ny, k is the number of a zone withre-

spectto r k=1, ..., Ny), and j is the number of the horseshoe-shaped vortex. We can then introduce the fol-
lowing numbering system:

j=DNis — 1) + &,
while the coordinates of the middles of the sections of associated vortices (rj, 6j) and the control points (rj,
on) are given by the equations
re; =r; = h + 8r(1 — 2E&),
8; = P((0.5 + 2(s — 1))/N2 — 1), 2.1
Oo; = P((1.5 + 2(s — 1))/N2 — 1).

Since the vector of the normal to the screw surface at the point g, 903-) is given by the expression
i

I/ 2 2
mE g

carrying out the integration with respect to r for the normal component of the velocity at the point {roj, Og5)
from the i-th associated vortex we obtain

v == {Toj» msinBy;, —mcos6;;),

¥ R _ i
Ovt (Pogs Bog) = — g7, 445 R(r, Fon) R(r, — or)

T, t‘ri 4 Or —rysc08 (P, —a ) ri—6r~r0.cos(ﬂij—an)] 2.2)

where

2 i _ . 2 { —
o Sin(§,; — o ) - mPd, cos (B —a)

Y g [ st (9 — )
R2(r) = m3%; + r{; + 12— 2ro;r €08 (8,5 — @n); 91y = oy — ;.
Similarly for the normal component of the velocity from the free vortex belonging to the i-th horseshoe-shaped
vortex and having a coordinate r along the height of the blade, we obtain

(2.3)

0 {2.4)

00
T, S‘roi (r? — m?) - r (m2 — rgj)cos Q + rm? (601 — ) sin Q

i i
Uy (s Ogp, 7) = —
v e Bor. 1) 4V m Ri(r, 6)

— g 3
PR .
T 6

where @ = 63 — 6 — o3 Ri(r,0) =m?(6y5— 6)%+rfj +r?-2rgr cosR. Then the normal component of the velocity
from the i-th horseshoe-shaped vortex at the point (rj, b¢5) 1s

Vo (ags 805) = et (Togs 803) + vyer (ogs Oy 75 -+ 87)— Vb (o, Os, 7y — ory = wiil;. (2.5)
Since the conditions for flow around all the blades are the same, the total velocity from the vortex system in-
troduced at the point (roj, 60]-) of the zeroth blade (n=0) will be

M N—i

= 3 n

vy (rgs: Bgs) = 2Ty 2 Wi
3=1 n=(

The vortex system which replaces the blades of the ring array induces normal velocities on the surfaces
of the cylinders. Hence, to satisfy the boundary conditions (1.3}, following the idea suggested in [14], we will
introduce an additional vortex system which is the reflection with respect to the circles r=1 and r =h of the
vortex system of the blades at each cross section x =const. In this case the normal velocities on the surfaces
of the cylinders induced by the reflected vortex system will not completely compensate the normal velocities
occurring from the vortex system replacing the blades of the array, However, to a first approximation we can
assume that the boundary conditions will be satisfied over the whole surface of the cylinders. This problem
was investigated in [14] when investigating the flow around a wing with a eylindrical fuselage, and it was con-
cluded that ealculations using the reflected system are fairly accurate. Calculations carried out by the author
for the case of coaxial cylinders enabled a similar conclusion to be drawn.

The normal velocities induced by the reflected vortex system are found from Egs. (2.2)-(2.5) in which we
must replace r; +8r by 1/(rj+4r) or hz/(ri +4r), respectively.
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The total normal velocity induced by all the vortex systems will be given by
M N—t )
Uyt (Fogs B5) = Zi T; 20 (w; —wij — w’z%z-),, (2:6)
= ==

where the quantities W?ji and Wrzlji define the normal velocities induced by the vortex systems reflected with
respect to the cylinders r =1 and r ='h, respectively.

Substituting Eq. (2.6) into the boundary condition (1.2) we obtain a system of algebraic equations for de-
termining the intensity of the associated vortices

AX =B, 2.7

where A = {Aji} isamatrix, the elements of which are given by the equation
N—1
5= 2% (Wi — wij — whjs);
=

xX={Ij} is a vector composed of the unknown intensities of the associated vortices, and B={V, (o> 0j)}-

Solving the system of equations (2.7) we obtainTj (i=1,..., M), after which we can calculate all the aero-
dynamic characteristics of both the blades as a whole and their cross sections. To do this it is necessary to
use Zhukovskii's theorem [13] for calculating the pressure drop

[p} = —pua(r)y(r, 9),

where y(r, 0) is the intensity of the associated vortices continuously distributed over the surface of a blade, p
is the density of the liquid, and v1=*/'v2 +w§r12rz is the velocity of the unperturbed flow of liquid with respect to
the blades.

Denoting by dS the element of area of a blade and using Eq. (1.1) we obtain

= r{ sz -+ r2drd0.

Then the aerodynamic force acting on a blade is

P = —pr} S. ) v, (1Y V' m® -2y (r, 8) drdd (2.8)

or, in dimensionless form, ¢, =P/1 puzs.

Now replacing 'wam2 +r2d0 by voTi and dr by 26r in Eq. (2.8) and changing from integrals fo finite sums
we obtain

Crn= 2 l/m2 -+ rZI‘
f Sl V-mz + 7'0 i=1
For the coefficients of the aerodynamic forces acting on the k-th cross section with respect to the height of the
blade, Cyx = Pk/?1 pvy (ri) S, we have

46r]/-m2+ 2 s
1&("‘2‘*"&) ZVm it P

i=1

np =

where S1=S/r§ and Sy, =Sk/r§ are the dimensionless areas of a blade and its k-th zone with respecttotheheight,
respectively. .

The algorithm for calculating the improper integals in Eq. {(2.4) has a considerable influence on the cal-
culation accuracy. We will introduce the variable x=6 - € o5 and divide the range of integration into two ranges:
[“Jij, Al and [A, =), where A>»1, The integral over the second range is levaluated using the asymptotic expan-
sion of the function under the integral for x 1 and subsequent integration by parts. To evaluate the integral
from —#ij to A we add and subtract the expression '

4 ro; (r2—m?) 4 r (m2 — r%j)
Sl [(m? + rroz) 2+ (roy — rz*

_'01'.]'



thereby eliminating the singularity of the function under the integral when the control point (roj, Goj) is situated
in the region of a horseshoe-shaped vortex, A comparison of the results of the evaluation using this algorithm
with the accurate values of the integrals for #ij =0 and ryj =0 gives a difference in only the third decimal place,

When the parameter h is close to 1 the aerodynamic characteristics vary only slightly along the height
of the ring channel. Hence, the intensity of the associated vortices by which the blade is replaced can be
assumed to be constant in the radial direction. Hence it follows that there will be no free vortices in the flow
behind the blade when 1 <r <h, At the ends of the blades (r =1 and h) free vortex filaments are not formed due
to the boundary condition (1.3). Hence, the associated vortices must continually extend in the radial direction
through the boundary of the region of flow up to the x axis and to infinity.

We will divide the blade into N, zones with respect to 6 and replace each of them by a rectilinear semi-
infinite vortex from the axis directed along r. Since the vortices cannot end in the liquid it is necessary to
introduce a system of free axial vortices emerging from the ends of the associated vortices (Fig. 2). However,
each vortex T of the system introduced induces radial velocities on the surfaces of the cylinders which are

given by the equation
Ui" T, Ng‘ - Esin(n + ;) {2 7 cos (1 =- ak)J’ (2.9)

8- risin?(n - ay) | T (B2 L pnyii2

where ¢ =m#6j—~x;9=0;—8; 6 is the coordinate of the i-th vortex defined by Egs. (2.1), andr =1 or h.

Since the function vir is odd with respect to 1 with period 2r/N, we can determine the coefficients of the
Fourier series ap(¢) and by(£) of this function for r=h and 1, respectively. As can be seen from Eg. (2.9), the
coefficients a;, (¢) and by (£) are odd functions of £ and, consequently, the radial velocity on the outer cylinder
can be represented in the form

~

bee

i 2 T (
ve§ By M) = 7 sin 7N’ Csin 1&dv \ a, {t) sin t4dt.
[ -)

0

i

T

A similar representation also occurs for v%({ . 1, n) withay replaced by by.

In order to satisfy the boundary condition (1.3) we must introduce the additional potential ¢,, which is
given by the expression '

. [ sin 1§ ¢ K sin 1= 0‘0 1
sinni'y g u; (t, ) —_ dt Yan {(t) sin Ttdt -+ k, o {1, 7} = v “2dy } b, (¢)sin Tédti’,

"

0 1] ¢ U

718

2
9t ==
n={
where
Mo = [EUT) T (o) — T(0) K, ()1 T, (v);
oy = [K, (vr) I (vh) — KL (th) T, (xr) /T, (0);
Ty = Fth) K (1) — I (t) K. (vh).

Here s =nN, and Ig and Kg are modified Bessel functions of the first and second kind, respectively; the primes
denote differentiation with respect to the argument.

Requiring that the condition for nonpenetration of the blades (1.2) should be satisfied at the points
(rg, 8gj) G=1,..., Ny, we obtain a system of algebraic equations for determining the unknown intensities of
the vortices
A
i2='1 Ly (e —wy) =1y

where

N— LI .
Wy = R S : E rysin (8, "f“k)"‘ Ay cos (B — o) ri_;_’ocos(“}zj““k) f
4m V m? -+ rg &5 mABE; - risin? (8,5 — o) { C(meed; 4 )t J

are the normal velocities induced by the vortices which replace the blades of the ring array, and

L (m o 00y
}/mz_l_rg\ro- om 0T /)

Wi =
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The dimensionless coefficient of the total aerodynamie force acting on a blade in this case is given by
the expression

N,
46r 21

Cn = ?1— I‘i.
is=1

. . 4 )
3. Using the above algorithms on the BESM-6 computer we determined the distributed and total aero-
dynamic characteristics of a number of ring arrays.

The parameters representing the geometry of an array and the blade were determined at the mean radius
of the ring channel m=r; cot § (B is the angle of stagger of the array), the thickness of the array

AR

T
3Ty ’

and the length

_(p—1p (3.1)
A= =

The right side of Eq. (2.7) was taken in the form

a{r Yvylr, .
V‘V(rois 90!) = (GO(JT)‘O}IVE, OJ)v
where a(ryj) is the angle of attack in the section r=ry;. In the calculations for h>>1 the change in the angle of
attack along the height of the blade was taken to be linear.

Figures 3 and 4 show the coefficient C& =Cp/a(r,) of the total aerodynamic force acting on a blade in the
ring array as a function of the thickness of the array 7 for angles of stagger § =30° and 60°, respectively. The
thickness of the array was varied either using the parameter ¢ for fixed h and N (N =4) or by changing the
number of blades (N=4, 8, 12, and 16) forfixedhand y (y =0.34 for 8 =60° and y =0.19635 for B =30°), For
each thickness of the blade we had lengths given by Eq. (3.1). The angle of attack varied from 0.15 for r =1 to
0.05 for r=h. The results of the calculations in both cases agree completely.

Curves 1 correspond to calculations using the algorithm for h>1 (h=20) while curves 2 correspond to
calculations using the algorithm for h~1 (h=2). Comparison with the results obtained in the plane theory for
a mean radius of the ring channel (the dashed lines) show considerable differences between the results for the
mean and greater thicknesses. For small 7 the results differ only slightly, but somewhat less than for the
plane theory, which is due to the effect of the extension of the blades.

We can explain this fact as follows. When the blades of the array rotate the liquid in the ring channel is
set into rotational metion, whichcan be simulated by an axial vortex. This motion is preserved later when the
liquid emerges from the blade turbine, influencing the value of the load on theblades. Since the energy ex-
pended on forming this motion is lost energy, a reduction in the aerodynamic force coefficient C& occurs. As
a result of this the motion controlled by the axial vortex is formed to a large extent only for fairly largethick-
nesses, and when 7«1 its effect is small. The additional reduction in the coefficient C§ for calculations using
the algorithm for h>>1 is due to losses of energy in forming vortex trails behind the blades due to the variability
of the load in the radial direction. It should also be noted that a change in the parameter h for fixed thickness
and angle of stagger of the array has only a small effect on the value of ca

_ Figure 5 shows the coefficient C¥ as a function of the height of a blade r for different extensions for an
array of thickness t =1 and angle of stagger 8 =30° for h=20. The angle of attack varied from « (1) =0.05 to
a(h) =0.15. The number of blades N was 4, 8, and 16, and the angle y =0.3927, 0.19635, and 0.0982 for A =1.5,
2.3, and 4.17, respectively. The results show that as the extension of the blades is increased the nature of the
change in the coefficient of the running aerodynamic force approximates the law of variation of the angle of
attack along the height of the blade.

Figure 6 shows the coefficient Cﬁ‘ of the total aerodynamic force as a function of the extension of the blade
A for an array with thickness 7 =1 and angle of stagger  =30°. The point corresponding to A -0 was obtained
by calculation using the algorithm for h~1 (h=2); for A > 0 the calculations were made using the algorithm for
h>>1 (h=20). The results of calculations on this example, shown in Fig. 5, were used to construct this relation-
ship. As can be seen from the results, calculations carried out using both algorithms agree quite well in the
region of small extensions. The weak dependence of the total aerodynamic force coefficient on the extension of
the blade should also be noted.
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SOME FORMULATIONS OF BOUNDARY-VALUE
PROBLEMS OF L-PLASTICITY

A. F. Revuzhenko and E, I. Shemyakin UDC 539.379

1. The construction of mathematical models of a deformable medium is usually reduced to describing
the relations between the stress and strain (velocity) tensors. Such an approach is based on two hypotheses:
1) Themedium is assumed continuous; 2) in constructing the model any infinitesimal volume of the medium is
allotted the properties of a macrospecimen if the latter is deformed under certain boundary conditions allowing
a homogeneous stress distribution. Thus, if the specimen is deformed elastically, then it is assumed that each
volume element is also deformed elastically. This assumption permits the description of the elasticity to re~
duce to the description of the elastic behavior of the volume element. By analogy, the legitimacy of such a
transfer is also assumed in an investigation of the plastic behavior. Hence, as in the theory of elasticity, the
problem of constructing a plastic model reduces to describing the plastic behavior of a volume element of a
continuous medium,

However, a class of materials can be mentioned for which the hypothesis of identity between the proper-
ties of the specimen and its volume element is not satisfied even approximately, Indeed, let a certain specimen
disclose plastic properties under definite loads. A situation is possible when the specimen is divided up into
discrete slip surfaces on separate parts (blocks) under the loads mentioned. In this case the plastic properties
of the specimen are entirely related to not only the inelastic strains of the blocks but also to their relative slips.

If the blocks are deformed elastically, then the plastic properties of the specimen depend only on their relative
slips.

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 128-137,
March-April, 1979. Original article submitted May 8, 1978.

V]
Do
b

0021-8944/79/2002- 0221 $07.50 ©1979 Plenum Publishing Corporation ‘



