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During the past two decades considerable attention has been devoted to the flow of liquids or  gases in 
axial c o m p r e s s o r s  and turbines.  In theoret ical  investigations an approximate solu-tion of the problem of the 
spatial flow through a turbine was obtained by splitting the problem into two interconnected two-dimensional  
problems:  calculating the average ax isymmetr ica l  flow through the blades of the apparatus and the flow through 
a grid situated on the sur face  of rotation in layers  of varying thickness [1-3]. In a number of papers  [4-11] 
the three-d imensional  nature of the flow was taken into account approximately without this subdivision of the 
problem. The geometry  of the blades was simulated either by a spatial a r r a y  of plates [6-8] o r  by a spatial 
r ing a r r a y  of blades,  the shape of which is parts  of sc rew surfaces  [10, 1i]. The lat ter  model obviously bet ter  
descr ibes  blades of an axial turbine in general ,  but the method of solving the problem in [10, 11] is too complex 
for making commerc ia l  calculations and requires  considerable  computer  t ime.  In this paper we descr ibe  a 
more  economic method of calculating the aerodynamic charac te r i s t i c s  of a spatial r ing a r r a y  around which an 
incompress ible  liquid flows, which is based on the vor tex theory  or  a propel ler  [12] and an impeller  of finite 
swing [13]. 

1. We will consider  the flow of a liquid through a single se r ies  of blades which rotate with constant angle 
of velocity w in a coaxial cyl indrical  channel, which is infinite in the axial direction. The model of the flow is 
based on the following assumptions:  1) the incoming flow is a uniform flow with an axial velocity v at infinity, 
2) the liquid is ideal and incompressible ,  and 3) the perturbations in the liquid are  small  compared with the un- 
per turbed flow. We will introduce a Cartesian sys tem of coordinates (x, y, z) and a cyl indr ical  sys tem of co-  
ordinates (x, r * ,  0 *) connected with the rotat ing se r ies  of blades. The x axis is directed along the axis of the 
cyl inders ,  and the y and z axes are  taken in a plane perpendicular  to it. The coordinates  r*  and 0* are  related 
to y and z by the usual equations: y = r ' c o s 0 * ,  z = r ' s i n 0 * ,  where the angle 6", is measured  in the positive 
direction f rom the y axis (Fig. 1). 

We will assume that the blades En (n =0, . . . ,  N-1 )  a re  infinitely thin, and their  shape is close to the 
surfaces  of the cur rent  of the unperturbed flow, which are  parts  of sc rew sur faces  bounded in the (r*, 0") plane 
by the rectangle  ~r l_<r* _<r2, - - , + a ~  ~.~ 0 " : ~ r  + u.}. Here an  =27m/N, n is the number of a blade, N is the 
number  of blades,  r 1 is the radius of  the inner cylinder,  r~. is the radius of the external  cylinder,  and - r  + a n  
and r +a  n a re  angles defining the position of the front and r e a r  edges of the blades,  respect ively .  Withinthe 
f ramework  of the model considered the vortex t ra i l s  which occur  behind the blades due to a change in the c i r -  
culation along the height of the blade will be assumed to be situated along the sur faces  of the cur rent  W n of the 
unperturbed flow bounded in the (r*, 0") plane by the half-zone ( r  1 _<r* ___r2, , ~ as  ~ 0* ~ co }. 
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The  s c r e w  s u r f a c e s  wh ich  s c h e m a t i c a l l y  r e p r e s e n t  t he  b l a d e s  and the  v o r t e x  t r a i l s  beh ind  t h e m  a r e  d e -  

f i ned  b y  t h e  equa t i ons  

x = rlmO, y = r lr  cos (0 -~- an) ,  z = rlr  sin (0 ~ r (1.1) 

w h e r e  m = v / w  r t ;  r = r * / r / a r e  t he  d i m e n s i o n l e s s  r a d i a l  c o o r d i n a t e ,  and the  ang le  O= O * - a  n. 

The  p e r t u r b e d  m o t i o n  of  t h e  l i qu id  o u t s i d e  t he  b l a d e s  and the  v o r t e x  t r a i l s  wi th  the  above  a s s u m p t i o n s  

w i l l  b e  p o t e n t i a l  and  s t e a d y  [10]. 

The  p o t e n t i a l  o f  t he  v e l o c i t y  q~ of  t h i s  m o t i o n  s a t i s f i e s  L a p l a c e ' s  equa t ion  

Acp = 0 

o u t s i d e  t h e  s u r f a c e s  l~n and W n (n =0 ,  . . . ,  N - l )  and t h e  fo l lowing  b o u n d a r y  c o n d i t i o n s :  n o n p e n e t r a t i o n  of  t he  

l iqu id  t h r o u g h  t h e  s u r f a c e  of  t h e  b l a d e s  

(v.V)r p = V~, x ~ En; (1.2) 

c o n t i n u i t y  of  the  p r e s s u r e  and the  n o r m a l  c o m p o n e n t  of  t he  v e l o c i t y  fo r  a t r a n s i t i o n  t h r o u g h  the  s u r f a c e  of  a 

v o r t e x  t r a i l  

[p] = 0, [(v.V)~01 = 0, x ~ W~; 

d e c a y  o f  t he  p e r t u r b e d  v e l o c i t i e s  at in f in i ty  in f ron t  of  t he  b l a d e  

lira VT = 0; 
x - 9 - - a o  

f i n i t e n e s s  o f  t he  v e l o c i t y  of  t h e  l i qu id  a long  t h e  l i n e s  of  t h e  f ron t  edges  of  the  b l a d e s  L n 

Vq ~ IL~ < oo; 

n o n p o n e t r a t i o n  of  t he  l i qu id  t h r o u g h  the  s u r f a c e  o f  the o u t e r  and  i n n e r  c y l i n d e r s  

Ot~,/Or = 0  for r = l a n d r  = h, (1.3) 

w h e r e  v is  t h e  v e c t o r  of  t he  n o r m a l  to  t he  s u r f a c e  ~'n; Vv is  t h e  n o r m a l  componen t  of  t he  p r o j e c t i o n  of  a b l a d e  
on i t s  m e a n  s u r f a c e  En; V -= g r a d ;  x = (x, y ,  z ) ; A  is L a p l a c e ' s  o p e r a t o r ;  h = r 2 / r l ;  and the  b r a c k e t s  deno te  sudden  

c h a n g e s  in  the  quan t i t y  e n c l o s e d  in  t h e m .  

2. The  p r o b l e m  can  b e  s o l v e d  u s i n g  the  s c h e m e  in which  the  b l a d e  is r e p l a c e d  by  a v o r t e x  s u r f a c e ,  when 

the  p a r a m e t e r  h >>1 and h ~ 1. 

We wi l l  f i r s t  c o n s i d e r  t h e  c a s e  when h >>1. We wi l l  d iv ide  t he  b l a d e  into N 1 zones  wi th  r e s p e c t  to r ,  N 2 
z o n e s  wi th  r e s p e c t  to  0, and  we w i l l  s i m u l a t e  it M =N1N 2 wi th  h o r s e s h o e - s h a p e d  v o r t i c e s  in t he  s a m e  way  a s  in 

[13] fo r  a s i n g l e - p l a n  i m p e l l e r  of  f in i te  swing.  

The  h o r s e s h o e - s h a p e d  v o r t e x  c o n s i s t s  of  a s e c t i o n  of  an a dd i t i ona l  v o r t e x  of  swing  2 5 r  = ( h - 1 ) / N  i and two 
s e m i i n f i n i t e  v o r t e x  f i l a m e n t s  c o n v e r g i n g  f r o m  the  ends  of  the  a d d i t i o n a l  v o r t e x  and s i t u a t e d  on the  s c r e w  l i n e s  
de f ined  b y  equa t i ons  (1.1) fo r  f ixed  v a l u e s  of the  c o o r d i n a t e  r equa l  to  t h e  c o o r d i n a t e s  of  t h e  ends  of  t he  a s -  
s o c i a t e d  v o r t e x .  A l l  t h e  v o r t i c e s  of  t h i s  s y s t e m  have  the  s a m e  i n t e n s i t y  F + ,  which  c a n  be  r e p r e s e n t e d i n  the  

f o r m  
F+ = voriF, 

w h e r e  F i s  a c e r t a i n  d i m e n s i o n l e s s  c o n s t a n t ,  and  v 0 is  t he  v e l o c i t y  o f  t he  u n p e r t u r b e d  flow a long  the  m e a n  r a d i u s  

o f  t he  channe l  [ r  = r  0 = (h +1 ) /2 ] ,  
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The  c h o i c e  of  the  c o o r d i n a t e s  of  t he  a s s o c i a t e d  v o r t i c e s  and the  c o n t r o l  poin ts  at which the  v e l o c i t y  is 
d e t e r m i n e d ,  due to  t he  s y s t e m  of  s c r e w  h o r s e s h o e - s h a p e d  v o r t i c e s ,  is m a d e  in the  (r ,  0) p lane  u s i n g  the  s a m e  
s c h e m e  as  in [13]. 

Suppose  s is t he  n u m b e r  of  the  zone  wi th  r e s p e c t  to  0 (s =1,  . . . ,  N2), k is the  n u m b e r  of  a zone  w i t h r e -  
s p e c t t o  r (k =1,  . . . ,  NI),  and j is t h e  n u m b e r  of t he  h o r s e s h o e - s h a p e d  v o r t e x .  We can  then  i n t r o d u c e  the  fo l -  
l owing  n u m b e r i n g  s y s t e m :  

j =  N z ( s - -  t )  + k,  

whi l e  the  c o o r d i n a t e s  of  t he  m i d d l e s  of  the  s e c t i o n s  of  a s s o c i a t e d  v o r t i c e s  (r j ,  0j) and the  c o n t r o l  po in t s  (r0j , 
00j) a r e  g iven  by  the  equa t ions  

ro~ = rj  = h + 5r(t - -  2k), 

Oj = ~((05 + 2(s - -  i ) ) /N~ - -  1), (2.1) 

Ooj = r  + 2(s - -  l ) ) /N~ - -  l ) .  

Since the vector of the normal to the screw surface at the point (r0j , 00j) is given by the expression 

i 
~r -~- ~ (ro~ , m sin 0o1 , - -  rncos Ooj), 

c a r r y i n g  out  t he  i n t e g r a t i o n  wi th  r e s p e c t  to r for  t he  n o r m a l  componen t  of  the  v e l o c i t y  at the  point  (r0j , 00j ) 
f r o m  the  i - t h  a s s o c i a t e d  v o r t e x  we ob ta in  

(2.2) 

w h e r e  

r~j sin ( ~ j  - %) -~ m-~elj cos (e~j - %) 

alJ = ] / ~  [m2~j + r02j sin~ ( ~ j  -- %)]'J (2.3) 

B 2(r )  ~ ~ + r 0 ~ j + r  ~ = m 9~: - -  2roar cos (~)i: ~ ) ;  Oij = 0o1 - -  0~. 

S i m i l a r l y  fo r  t he  n o r m a l  c o m p o n e n t  of the  v e l o c i t y  f r o m  the  f r e e  v o r t e x  b e l o n g i n g  to  the  ~-th h o r s e s h o e - s h a p e d  
v o r t e x  and hav ing  a c o o r d i n a t e  r a long  the  he ight  of  the  b l a d e ,  we ob ta in  

oa 

F, roj (r 2 --  m~) -:- r (m~ --  r~j)~os a + rm~ (0ol --  O) sin a (2.4) 
vv_ ( ro j  , Oo.f, r ) -  4 .~Vrn2+r~ j  6~ 1:i~(r, O) dO, 

w h e r e  S2 = 00j - 0 - an ;  R~(r,0) =m2(00j - 0) 2 +r ] j  + r 2 - 2 r 0 j r  c o s f t .  Then t h e  n o r m a l  componen t  of  the  v e l o c i t y  
f r o m  the  i - t h  h o r s e s h o e - s h a p e d  v o r t e x  at  the  point  (r0j, 00j) is 

i 
u~ (ro~,, Ooj ) ~ ~ ~ = v~+ (roj, 0o~ ) + v~_ (roj , 0oi , rf + 6 r ) - -  vv_ (rol , 0o] , r i - -  5r) = w]~r i. (2.5) 

Since  the  cond i t i ons  for  flow a r o u n d  a l l  the  b l a d e s  a r e  t he  s a m e ,  the  t o t a l  v e l o c i t y  from_ the  v o r t e x  s y s t e m  in-  
t r o d u c e d  at  t h e  point  (r@, 00j) of  the  z e r o t h  b l a d e  (n =0) wi t t  be  

M N - - I  

v~(roj , Ooj) = ~V rf ~ w~. 
~=1 n=O 

The v o r t e x  s y s t e m  which  r e p l a c e s  t h e  b l a d e s  of the  r i n g  a r r a y  i n d u c e s  n o r m a l  v e l o c i t i e s  on t h e  s u r f a c e s  
of the cylinders. Hence, to satisfy the boundary conditions (1.3), following the idea suggested in [14]!, we will 
introduce an additional vortex system which is the reflection with respect to the circles r =i and r =h of the 

vortex system of the blades at each cross section x =const. In this case the normal velocities on the surfaces 
of the cylinders induced by the reflected vortex system will not completely compensate the normal velocities 
occurring from the vortex system replacing the blades of the array. However, to a first approximation we can 
assume that the boundary conditions will be satisfied over the whole surface of the cylinders. This problem 
was investigated in [14] when investigating ~he flow around a wing with a cylindrical fuselage, and it was con- 
cluded that calculations using the reflected system are fairly accurate. Calculations carried out by the author 
for the case of coaxial cylinders enabled a similar conclusion to be drawn. 

The normal velocities induced by the reflected vortex system are found from Eqs. (2.2)-(2.5) in which we 
must replace r i ~6r by I/(r i • h~'/(ri :~6r), respectively. 
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The to ta l  no rmal  veloci ty  induced by all the vor tex  s y s t e m s  will be  given by 
M N - - t  

v.,,l (roj, 0ol) = ~-,  r ,  E (~j~ - ~,~j~ - ~'~5~),, 
i=1  n=0 

(2:6) 

n ~ 
where  the quantit ies w~j i and w2j i defme the normal  veloci t ies  induced by the vor tex  s y s t e m s  re f lec ted  with 
r e spec t  to the cy l inders  r =1 and r =h ,  r e s pec t i ve ly .  

Substituting Eq. (2.6) into the boundary condition (1.2) we obtain a s y s t e m  of a lgebra ic  equations for  de- 
t e r m i n i n g  the intensity of the assoc ia ted  vo r t i ces  

A X  = B, (2.7) 

where  A = {Aji } is a m a t r i x ,  the e lements  of which a r e  given by the equation 

N - - I  

A s ,  = E ( w ~  - w , ~  - ~ ) ;  
n=O 

x =  {r i} is a vec tor  composed  of the unknown intensi t ies  of  the assoc ia ted  vo r t i ce s ,  and B ={V~ (r0j, 00j) }. 

Solving the s y s t e m  of equations (2.7) we obtain Fi (i = 1 , . . . ,  M), a f te r  which we can calcula te  all the ae ro -  
dynamic c h a r a c t e r i s t i c s  of both the blades as a whole and the i r  c ro s s  sect ions .  To do this it is n e c e s s a r y  to 
use Zhukovski i ' s  t h e o r e m  [13] for  calculat ing the p r e s s u r e  drop 

[p] = --pul(r)~(r, 0), 

w h e r e  T(r ,  0) is the intensi ty of the assoc ia ted  vo r t i ce s  continuously dis t r ibuted over  the su r face  of a blade,  p 
is the densi ty of the liquid, and v 1 =~fv ~ +~02r~r 9 is the  veloci ty  of the unper turbed flow of liquid with r e spec t  to 
the blades.  

Denoting by dS the e lement  of a r ea  of a blade and using Eq. (1.1) we obtain 

dS = r~ 1/m---~ r~drdO. 

Then the ae rodynamic  force  acting on a blade is 
h 

P = --  pr~ if J" vl (r) V'm 2 -I- r*v (r, O) erdO (2.8) 
I - - r  

or ,  in d imens ion less  fo rm,  C~ = P i t  pv~oS. 

Now replac ing  T4"m2+r[d0 by v0Fi and dr by 2 5 r  in Eq. (2.8) and changing f r o m  integra ls  to finite sums  
we obtain 

M 
Ca = 48r . ~ ,  2 

, S, V m ~  i~--i 1//m''~ q- r, r, .  

For the  coeff icients  of the ae rodynamic  fo rces  acting on the k - th  c r o s s  sect ion with r e spec t  to the height of the 

blade, Cn~ = Ph /~  pvl (rh) Sa, we have 

c,,,, = E V'm* sly(,,* + r,) i=, + r.WN, i+k, 

where  S 1 = S / r l  2 and S~k = Sk/ r l  2 a r e  the d imens ion less  a r e a s  of a blade and its k - th  zone with r e spec t  to the height,  
r e spee t  ively. 

The a lgor i thm for calcula t ing the imprope r  integals in Eq. (2.4) has  a cons iderable  influence on the ca l -  
culation accuracy .  We will introduce the va r i ab le  x = 0 - e0j and divide the range  of integrat ion into two ranges :  
[ -~  ij, A] and [A, ~), where  A >>1. The integral  ove r  the second range  is evaluated using the asymptot ic  expan-  
sion of the function under the integral  for x >>1 and subsequent integrat ion by par t s .  To evaluate the integral  
f r o m  - ~  ij to A we add and subt rac t  the express ion  

A 

[(  m2 -[- rro j )  xZ -[- ( ro t  - -  r)213/2 
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thereby eliminating the s ingulari ty of the function under the integral when the control  point (r0j , 00j) is situated 
in the region of a horseshoe-shaped  vortex. A compar ison of the resul ts  of the evaluation using this algori thm 
with the accura te  values of the integrals for d ij =0 and r0j =0 gives a difference in only the third  decimal place. 

When the pa rame te r  h is  close to 1 the aerodynamic cha rac te r i s t i c s  va ry  only slightly along the height 
of the r ing channel. Hence, the intensity of the associa ted vor t ices  by which the blade is replaced can be 
assumed to be constant in the radial  direction. Hence it follows that there  will be no free vor t ices  in the flow 
behind the blade when 1 < r < h. At the ends of the blades (r = 1 and h) f ree  vor tex filaments are  not :formed due 
to the boundary condition (1.3). Hence, the associa ted  vort ices must continually extend in the radial  direction 
through the boundary of the region of flow up to the x axis and to infinity, 

We will divide the blade into N 2 zones with respect  to 0 and replace each of them by a rec t i l inear  semi-  
infinite vortex f rom the axis directed along r. Since the vort ices cannot end in the liquid it is neces sa ry  to 
introduce a sys tem of f ree axial vor t ices  emerging f rom the ends of the associated vor t ices  (Fig. 2).. However, 
each vor tex F[ of the sys t em introduced induces radial velocities on the surfaces  of the cyl inders  which are  
given by the equation 

N--I  
[ r cos ( r  t - -  c%) ]  r~ ~ sin (n -I- =h) "1 ~ (2.9) 

where ~ = m O  i - x ;  y = 0 i -  0 ; 0 i is the coordinate of the i-th vortex defined by Eqs. (2.1), and r =1 or  h. 

Since the function v~: is odd with respect to 77 with period 2~/N, we can determine the coefficients of the 
Fourier series an(~ ) and bn( ~ ) of this function for r =h and I, respectively. As can be seen from Eq. (2.9), the 
coefficients an(~) and bn(~) are odd functions of ~ and 9 consequently~ the radial velocity on the outer cylinder 
can be represented in the form 

2 ,~ sin nN~l fsinr~dT l a ~ ( t )  s i n ~ t d t .  d (~, h,  n) = .-h- ~ .  , 

A s imi la r  representa t ion also occurs  for vir(~, 1, V) withan replaced by b n. 

In o rder  to sat isfy the boundary condition (1.3) we must introduce the additionai potential q)+, which is 
given by the expression 

where 

sin +? d~ i' b~ (t) sm "f iat  , 2 sin nN~] ~t s (% r) sin "c~ dT a n (t)  sin T t d t  ~ e~ (~, r) - - i - - -  
r =" "s n=l : z . ' o J 

0 

~,~ = [~-; (,) [~ (T,) - L (,) K~ ( T r ) ] I L  (T); 

~ = [Ks (~,) x: (~h) - x ;  (Th) L (T0] /L (~); 

r~ =: L�9 t~t~) [; :  (T) - -  r :  (~) A,"' (~h). 

Here s : nN,  and Is and Ks a re  modified Bessel  functions of the f i rs t  and second kind, respect ively;  the p r imes  
denote differentiation with respect  to the argument.  

Requiring that the condition for  nonpenetration of the blades (1.2) should be satisfied at the points 
(r 0, 00j) (j = 1 , . . . ,  N2), we obtain a sys tem of algebraic  equations for determining the unknown intensities of 
the vor t ices  

where 

~l~ 1 , 

~z 

i=1 

N-- I  
1 r o sin m20 i1 i ro cos (%s - %) ! 

are  the normal  velocities induced by the vor t ices  which replace the blades of the r ing a r ray ,  and 

1/"~ + 4 ~~ o~ ro --~--~ j. 
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The dimensionless  coefficient of the total aerodynamic force acting on a blade in this case is given by 
the express ion 

N, 

C,~ = - -  45--L % r~. 
S1 i = t  

3. Using the above a lgor i thms on the B]~SM-6 computer  we determined the distributed and total ae ro -  
dynamic cha rac t e r i s t i c s  of a number  of r ing a r r ays .  

The pa ramete r s  represen t ing  the geometry  of an a r r a y  and the blade were  determined at the mean radius 
of the ring channel m = r  0 cot fl (fl is the angle of s tagger  of the a r ray) ,  the thickness of the a r r a y  

17 ~ N ,  
~ r  0 

and the length 
~,= (h-- l)~ (3.1) 

St 

The right side of Eq. (2.7) was taken in the form 

(,'o j) ~,, (,'o j) 
Vv(roj, Ooj,) -- = (to) oo ' 

where ~(r0j) is the angle of attack in the sect ion r=r0j .  I n t h e  calculations for h>>l the change in the angle of 
at tack along the height of the blade was taken to be l inear.  

Figures 3 and 4 show the coefficient Cn a =Cn/a(ro) of the total aerodynamic  force acting on a blade in the 
r ing a r r a y  as a function of the thickness of the a r r a y  w for angles of s tagger /3  =30 ~ and 60 ~ respect ively .  The 
thickness  of the a r r a y  was var ied  either using the pa rame te r  r for fixed h and N (N =4) or  by changing the 
number  of blades (N=4, 8, 12, and 16) fo r f ixed  hand  r (r =0.34 for fl =60 ~ and r =0.19635 for fl =30~ For 
each thickness  of the blade we had lengths given by Eq. (3.1). The angle of attack var ied f rom 0.15 for r =1 to 
0.05 for r =h. The resul ts  of the calculations in both cases  agree completely.  

Curves 1 co r respond  to calculations using the a lgor i thm for h >>1 (h=20) while curves  2 correspond to 
calculat ions u s i n g t h e  a lgor i thm for h ~  1 (h=2). Comparison with the resul ts  obtained in the plane theory for 
a mean radius of the r ing  channel (the dashed lines) show considerable  differences between the resul ts  for the 
mean and g rea te r  th icknesses .  For small  ~" the resul ts  differ only slightly, but somewhat less than for the 
plane theory ,  which is due to the effect of the extension of the blades. 

We can explain this fact as follows. When the blades of the a r r a y  rotate the liquid in the ring channel is 
set into rotat ional  motion, whichcan be simulated by an axial vortex. This motion is p reserved  la ter  when the 
liquid emerges  f rom the blade turbine, influencing the value of the load on the blades. Since the energy ex- 
pended on forming this motion is lost energy,  a reduction in the aerodynamic force coefficient C~ occurs .  As 
a resul t  of this the motion controlled by the axial vor tex is formed to a large  extent only for fairly t a rge th ick-  
nesses ,  and when ~-<<1 its effect is small.  The additional reduction in the coefficient Cn ~ for calculations using 
the a lgor i thm for h >>1 is due to losses  of energy in forming vortex t ra i l s  behind the blades due to the variabi l i ty  
of the load in the radial  direction.  It should also be noted that a change in the pa ramete r  h for fixed thickness 
and angle of s tagger  of the a r r a y  has only a smal l  effect on the value of Cn a. 

Figure 5 shows the coefficient Cn ~ as a function of the height of a blade r for different extensions for an 
a r r a y  of thickness v = 1 and angle of s tagger  fl = 30 ~ for h =20. The angle of attack var ied f rom a (1) = 0.05 to 
a(h) =0.15. The number  of blades N was 4, 8, and 16, and the angle r =0.3927, 0.19635, and 0.0982 fo rk  =1.5, 
2.3, and 4.17, respect ively .  The resul ts  show that as the extension of the blades is increased the nature of the 
change in the coefficient of the running aerodynamic force  approximates the law of var ia t ion of the angle of 

attack along the height of the blade. 

Figure 6 shows the coefficient Cu ~ of the total aerodynamic force as a function of the extension of the blade 
)t for an a r r a y  with thickness  ~- =1 and angle of s tagger  fl =30 ~ The point corresponding to ;~-*0 was obtained 
by calculation using the a lgor i thm for h ~  1 (h =2); for ~ > 0 the calculations were made using the algori thm for 
h >>1 (h =20). The resul t s  of calculat ions on this example, shown in Fig. 5, were used to construct  this re la t ion-  
ship. As can be seen f rom the resu l t s ,  calculations ca r r i ed  out using both algori thms agree quite well in the 
region of smal l  extensions. The weak dependence of the total aerodynamic force coefficient on the extension of 

the blade should also be noted. 
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S O M E  F O R M U L A T I O N S  O F  B O U N D A R Y - V A L U E  

P R O B L E M S  O F  L - P L A S T I C I T Y  

A. F .  R e v u z h e n k o  a n d  E .  I .  S h e m y a k i n  UDC 539.379 

1. The construct ion of ma themat i ca l  models  of a de formable  med ium is usually reduced to descr ib ing  
the re la t ions  between the s t r e s s  and s t ra in  (velocity) t e n s c r s .  Such an approach  is based on two hypotheses :  
1) The med ium is a s s um ed  continuous; 2) in cons t ruc t ing  the model  any inf ini tes imal  volume of the med ium is 

al lot ted the p r o p e r t i e s  of  a m a c r o s p e c i m e n  if the la t te r  is deformed under ce r ta in  boundary conditions allowing 
a homogeneous s t r e s s  distr ibution.  Thus,  if the spec imen  is deformed e las t ica l ly ,  then it is a s sumed  tha t  each  
volume e lemen t  is a lso  de fo rmed  e las t ica l ly .  This  assumpt ion  p e r m i t s  the descr ip t ion  of the e las t i c i ty  to r e -  
duce to the descr ip t ion  of the e las t ic  behav io r  of the volume e lement .  By analogy, the l eg i t imacy  of such a 
t r a n s f e r  is a lso a s s u m e d  in an invest igat ion of the p las t ic  behavior .  Hence,  as  in the theory  of elas~:icity, the 
p rob l em of cons t ruc t ing  a p las t ic  model  r educes  to descr ib ing  the p las t ic  behavior  of a volume e lement  of a 
continuous medium.  

However ,  a c l a s s  of m a t e r i a l s  can be mentioned for  which the hypothesis  of  identity between the p r o p e r -  
t ies of the spec imen  a'ad its vo lume e lement  is not sa t i s f ied  even approximate ly ,  Indeed, let a cer ta in  spec imen  
d isc lose  p las t ic  p rope r t i e s  under definite loads.  A si tuation is poss ib le  when the spec imen  is divided up into 
d i sc re t e  sl ip su r f ace s  on s e p a r a t e  par t s  (blocks) under the loads mentioned. In this  case  the plas t ic  p rope r t i e s  
of the spec imen  a r e  en t i re ly  r e l a t ed  to not only the inelast ic  s t r a ins  of the blocks but also to the i r  r e la t ive  sl ips.  
If  the blocks a r e  deformed e las t ica l ly ,  then the p las t ic  p rope r t i e s  of the spec imen  depend only on the i r  re la t ive  
sl ips.  
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